'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , p(s(0())) -> 0() , f(X) -> n__f(X) , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X} Details: We have computed the following set of weak (innermost) dependency pairs: { f^#(0()) -> c_0(0^#()) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , p^#(s(0())) -> c_2(0^#()) , f^#(X) -> c_3() , s^#(X) -> c_4() , 0^#() -> c_5() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate^#(n__0()) -> c_8(0^#()) , activate^#(X) -> c_9()} The usable rules are: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} The estimated dependency graph contains the following edges: {f^#(0()) -> c_0(0^#())} ==> {0^#() -> c_5()} {f^#(s(0())) -> c_1(f^#(p(s(0()))))} ==> {f^#(X) -> c_3()} {f^#(s(0())) -> c_1(f^#(p(s(0()))))} ==> {f^#(s(0())) -> c_1(f^#(p(s(0()))))} {f^#(s(0())) -> c_1(f^#(p(s(0()))))} ==> {f^#(0()) -> c_0(0^#())} {p^#(s(0())) -> c_2(0^#())} ==> {0^#() -> c_5()} {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} ==> {f^#(X) -> c_3()} {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} ==> {f^#(s(0())) -> c_1(f^#(p(s(0()))))} {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} ==> {f^#(0()) -> c_0(0^#())} {activate^#(n__s(X)) -> c_7(s^#(activate(X)))} ==> {s^#(X) -> c_4()} {activate^#(n__0()) -> c_8(0^#())} ==> {0^#() -> c_5()} We consider the following path(s): 1) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , f^#(0()) -> c_0(0^#()) , 0^#() -> c_5()} The usable rules for this path are the following: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(0()) -> c_0(0^#()) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [4] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [6] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(0()) -> c_0(0^#())} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(0()) -> c_0(0^#())} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [4] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [5] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#() -> c_5()} and weakly orienting the rules { f^#(0()) -> c_0(0^#()) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#() -> c_5()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0^#() = [1] c_1(x1) = [1] x1 + [3] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [12] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [8] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { 0() -> n__0() , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [1] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [14] n__f(x1) = [1] x1 + [2] n__s(x1) = [1] x1 + [1] n__0() = [0] s(x1) = [1] x1 + [2] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [12] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X)) , 0() -> n__0() , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X)) , 0() -> n__0() , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 20 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(20, 21) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(22) -> 21 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(23) -> 22 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 20 , n__0_3() -> 23 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , f^#_1(14) -> 17 , f^#_2(15) -> 18 , c_0_0(1) -> 3 , c_0_1(19) -> 6 , c_0_1(19) -> 17 , c_0_2(24) -> 18 , 0^#_0() -> 1 , 0^#_1() -> 19 , 0^#_2() -> 24 , c_1_1(17) -> 3 , c_1_2(18) -> 6 , c_5_0() -> 1 , c_5_1() -> 19 , c_5_2() -> 24 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 2) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#()) , 0^#() -> c_5()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0() , f^#(0()) -> c_0(0^#()) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__0()) -> 0() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p(s(0())) -> 0()} and weakly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p(s(0())) -> 0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(0()) -> c_0(0^#())} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(0()) -> c_0(0^#())} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#() -> c_5()} and weakly orienting the rules { f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#() -> c_5()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] 0^#() = [4] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [3] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [1] 0^#() = [1] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [7] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , 0^#() -> c_5() , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 18 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(18, 19) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(20) -> 19 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(21) -> 20 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 18 , n__0_3() -> 21 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_0_0(1) -> 3 , c_0_1(17) -> 6 , 0^#_0() -> 1 , 0^#_1() -> 17 , c_5_0() -> 1 , c_5_1() -> 17 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 3) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , f^#(0()) -> c_0(0^#())} The usable rules for this path are the following: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#())} Details: We apply the weight gap principle, strictly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(0()) -> c_0(0^#())} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(0()) -> c_0(0^#())} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [4] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [4] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [2] 0^#() = [2] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [4] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [12] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [2] 0^#() = [2] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [8] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X))} and weakly orienting the rules { 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [12] n__s(x1) = [1] x1 + [5] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { s(X) -> n__s(X) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { s(X) -> n__s(X) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#()) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(9) -> 4 , f_1(13) -> 13 , f_2(19) -> 13 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 9 , 0_1() -> 13 , 0_2() -> 14 , 0_2() -> 19 , 0_3() -> 22 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 13 , cons_1(5, 6) -> 4 , cons_2(14, 15) -> 4 , cons_2(14, 15) -> 13 , cons_3(22, 23) -> 13 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 13 , n__f_1(4) -> 4 , n__f_1(7) -> 6 , n__f_2(9) -> 4 , n__f_2(13) -> 13 , n__f_2(16) -> 15 , n__f_3(19) -> 13 , n__f_3(24) -> 23 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 13 , n__s_1(4) -> 4 , n__s_1(8) -> 7 , n__s_2(5) -> 10 , n__s_2(13) -> 13 , n__s_2(17) -> 16 , n__s_3(14) -> 20 , n__s_3(25) -> 24 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 13 , n__0_1() -> 5 , n__0_1() -> 8 , n__0_1() -> 9 , n__0_1() -> 13 , n__0_2() -> 14 , n__0_2() -> 17 , n__0_2() -> 19 , n__0_3() -> 22 , n__0_3() -> 25 , s_0(4) -> 4 , s_1(5) -> 10 , s_1(13) -> 13 , s_2(14) -> 20 , p_1(10) -> 9 , p_2(20) -> 19 , activate_0(2) -> 4 , activate_1(2) -> 13 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(9) -> 11 , f^#_1(13) -> 12 , f^#_2(19) -> 21 , c_0_0(1) -> 3 , c_0_1(18) -> 11 , c_0_1(18) -> 12 , c_0_2(26) -> 21 , 0^#_0() -> 1 , 0^#_1() -> 18 , 0^#_2() -> 26 , c_1_1(11) -> 3 , c_1_2(21) -> 12 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(12) -> 1} 4) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , f^#(X) -> c_3()} The usable rules for this path are the following: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0())))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(X) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [6] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [7] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [5] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [1] n__0() = [5] s(x1) = [1] x1 + [13] p(x1) = [1] x1 + [4] activate(x1) = [1] x1 + [3] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [8] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 19 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(19, 20) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(21) -> 20 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(22) -> 21 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 19 , n__0_3() -> 22 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , f^#_1(14) -> 17 , f^#_2(15) -> 18 , c_1_1(17) -> 3 , c_1_2(18) -> 6 , c_3_0() -> 1 , c_3_0() -> 3 , c_3_1() -> 6 , c_3_1() -> 17 , c_3_2() -> 18 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 5) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#())} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(0()) -> c_0(0^#())} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p(s(0())) -> 0()} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p(s(0())) -> 0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [4] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [2] 0^#() = [2] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [5] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [9] 0^#() = [1] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [12] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [3] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [7] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X , f^#(0()) -> c_0(0^#())} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(15) -> 4 , f_2(16) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 15 , 0_2() -> 11 , 0_2() -> 16 , 0_3() -> 18 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 8) -> 4 , cons_2(11, 12) -> 5 , cons_2(16, 12) -> 4 , cons_3(18, 19) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(9) -> 8 , n__f_2(5) -> 5 , n__f_2(13) -> 12 , n__f_2(15) -> 4 , n__f_3(16) -> 5 , n__f_3(20) -> 19 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(10) -> 9 , n__s_2(11) -> 17 , n__s_2(14) -> 13 , n__s_3(21) -> 20 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 10 , n__0_1() -> 15 , n__0_2() -> 11 , n__0_2() -> 14 , n__0_2() -> 16 , n__0_3() -> 18 , n__0_3() -> 21 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(11) -> 17 , p_1(5) -> 15 , p_2(17) -> 16 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_0_0(1) -> 3 , c_0_1(7) -> 6 , 0^#_0() -> 1 , 0^#_1() -> 7 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 6) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} The usable rules for this path are the following: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(s(0())) -> 0() , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Details: We apply the weight gap principle, strictly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [2] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [4] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [8] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__s(X)) -> s(activate(X))} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__s(X)) -> s(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [8] n__0() = [2] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [15] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [1] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [12] c_6(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0() -> n__0() , f(X) -> n__f(X)} and weakly orienting the rules { activate(n__s(X)) -> s(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0() -> n__0() , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [10] 0() = [14] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [15] n__0() = [13] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [15] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [15] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(0()) -> cons(0(), n__f(n__s(n__0())))} and weakly orienting the rules { 0() -> n__0() , f(X) -> n__f(X) , activate(n__s(X)) -> s(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(0()) -> cons(0(), n__f(n__s(n__0())))} Details: Interpretation Functions: f(x1) = [1] x1 + [4] 0() = [6] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [2] activate(x1) = [1] x1 + [9] f^#(x1) = [1] x1 + [2] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [1] x1 + [9] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [11] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X)) , f(s(0())) -> f(p(s(0()))) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { f(0()) -> cons(0(), n__f(n__s(n__0()))) , 0() -> n__0() , f(X) -> n__f(X) , activate(n__s(X)) -> s(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X)) , f(s(0())) -> f(p(s(0()))) , f^#(s(0())) -> c_1(f^#(p(s(0()))))} Weak Rules: { f(0()) -> cons(0(), n__f(n__s(n__0()))) , 0() -> n__0() , f(X) -> n__f(X) , activate(n__s(X)) -> s(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , f_2(7) -> 4 , f_2(7) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 11 , 0_2() -> 7 , 0_2() -> 9 , 0_3() -> 16 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_2(9, 13) -> 4 , cons_2(9, 13) -> 5 , cons_3(16, 17) -> 4 , cons_3(16, 17) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_2(7) -> 4 , n__f_2(7) -> 5 , n__f_2(14) -> 13 , n__f_3(18) -> 17 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(4) -> 4 , n__s_2(5) -> 5 , n__s_2(15) -> 14 , n__s_3(9) -> 8 , n__s_3(19) -> 18 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 11 , n__0_2() -> 7 , n__0_2() -> 9 , n__0_2() -> 15 , n__0_3() -> 16 , n__0_3() -> 19 , s_0(4) -> 4 , s_1(5) -> 5 , s_2(9) -> 8 , p_1(5) -> 11 , p_2(8) -> 7 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , f^#_1(11) -> 10 , f^#_2(7) -> 12 , c_1_1(10) -> 3 , c_1_2(12) -> 6 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 7) { activate^#(n__s(X)) -> c_7(s^#(activate(X))) , s^#(X) -> c_4()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , s^#(X) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [7] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p(s(0())) -> 0()} and weakly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p(s(0())) -> 0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__s(X)) -> c_7(s^#(activate(X)))} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__s(X)) -> c_7(s^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { activate^#(n__s(X)) -> c_7(s^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [5] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [1] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [8] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [8] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [12] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , s^#(X) -> c_4()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 17 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(17, 18) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(19) -> 18 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(20) -> 19 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 17 , n__0_3() -> 20 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , s^#_0(2) -> 1 , s^#_0(4) -> 3 , s^#_1(5) -> 6 , c_4_0() -> 1 , c_4_0() -> 3 , c_4_1() -> 6 , activate^#_0(2) -> 1 , c_7_0(3) -> 1 , c_7_1(6) -> 1} 8) {activate^#(n__s(X)) -> c_7(s^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__0()) -> 0() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__s(X)) -> c_7(s^#(activate(X)))} and weakly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__s(X)) -> c_7(s^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [2] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p(s(0())) -> 0()} and weakly orienting the rules { activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p(s(0())) -> 0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [2] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [12] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [11] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [10] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [11] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [5] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [4] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [1] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 17 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(17, 18) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(19) -> 18 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(20) -> 19 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 17 , n__0_3() -> 20 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , s^#_0(2) -> 1 , s^#_0(4) -> 3 , s^#_1(5) -> 6 , activate^#_0(2) -> 1 , c_7_0(3) -> 1 , c_7_1(6) -> 1} 9) {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__0()) -> 0() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [2] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p(s(0())) -> 0()} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p(s(0())) -> 0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [2] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [12] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [11] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [10] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [11] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [5] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [4] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [1] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [8] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__0()) -> 0() , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 17 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(17, 18) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(19) -> 18 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(20) -> 19 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 17 , n__0_3() -> 20 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 10) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(X) -> c_3()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X , s(X) -> n__s(X) , 0() -> n__0() , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X) , p(s(0())) -> 0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(X) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [7] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p(s(0())) -> 0()} and weakly orienting the rules { activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p(s(0())) -> 0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0() -> n__0()} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0() -> n__0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {s(X) -> n__s(X)} and weakly orienting the rules { 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {s(X) -> n__s(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] n__f(x1) = [1] x1 + [0] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [8] p(x1) = [1] x1 + [5] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [8] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__f(x1) = [1] x1 + [1] n__s(x1) = [1] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [15] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__s(X)) -> s(activate(X)) , f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , f(X) -> n__f(X)} Weak Rules: { activate(n__f(X)) -> f(activate(X)) , s(X) -> n__s(X) , 0() -> n__0() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , p(s(0())) -> 0() , activate(n__0()) -> 0() , activate(X) -> X , f^#(X) -> c_3()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(5) -> 5 , f_1(14) -> 4 , f_2(15) -> 5 , 0_0() -> 4 , 0_1() -> 5 , 0_1() -> 14 , 0_2() -> 10 , 0_2() -> 15 , 0_3() -> 17 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(5, 7) -> 4 , cons_2(10, 11) -> 5 , cons_2(15, 11) -> 4 , cons_3(17, 18) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(4) -> 4 , n__f_1(8) -> 7 , n__f_2(5) -> 5 , n__f_2(12) -> 11 , n__f_2(14) -> 4 , n__f_3(15) -> 5 , n__f_3(19) -> 18 , n__s_0(2) -> 2 , n__s_0(2) -> 4 , n__s_0(2) -> 5 , n__s_1(5) -> 4 , n__s_1(5) -> 5 , n__s_1(9) -> 8 , n__s_2(10) -> 16 , n__s_2(13) -> 12 , n__s_3(20) -> 19 , n__0_0() -> 2 , n__0_0() -> 4 , n__0_0() -> 5 , n__0_1() -> 5 , n__0_1() -> 9 , n__0_1() -> 14 , n__0_2() -> 10 , n__0_2() -> 13 , n__0_2() -> 15 , n__0_3() -> 17 , n__0_3() -> 20 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(10) -> 16 , p_1(5) -> 14 , p_2(16) -> 15 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_3_0() -> 1 , c_3_0() -> 3 , c_3_1() -> 6 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 11) { p^#(s(0())) -> c_2(0^#()) , 0^#() -> c_5()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#() -> c_5()} Weak Rules: {p^#(s(0())) -> c_2(0^#())} Details: We apply the weight gap principle, strictly orienting the rules {0^#() -> c_5()} and weakly orienting the rules {p^#(s(0())) -> c_2(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#() -> c_5()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [1] c_1(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { 0^#() -> c_5() , p^#(s(0())) -> c_2(0^#())} Details: The given problem does not contain any strict rules 12) {p^#(s(0())) -> c_2(0^#())} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {p^#(s(0())) -> c_2(0^#())} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {p^#(s(0())) -> c_2(0^#())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(0())) -> c_2(0^#())} Details: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [1] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {p^#(s(0())) -> c_2(0^#())} Details: The given problem does not contain any strict rules 13) {activate^#(n__0()) -> c_8(0^#())} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(n__0()) -> c_8(0^#())} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(n__0()) -> c_8(0^#())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__0()) -> c_8(0^#())} Details: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(n__0()) -> c_8(0^#())} Details: The given problem does not contain any strict rules 14) { activate^#(n__0()) -> c_8(0^#()) , 0^#() -> c_5()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#() -> c_5()} Weak Rules: {activate^#(n__0()) -> c_8(0^#())} Details: We apply the weight gap principle, strictly orienting the rules {0^#() -> c_5()} and weakly orienting the rules {activate^#(n__0()) -> c_8(0^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#() -> c_5()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [1] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { 0^#() -> c_5() , activate^#(n__0()) -> c_8(0^#())} Details: The given problem does not contain any strict rules 15) {activate^#(X) -> c_9()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(X) -> c_9()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(X) -> c_9()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(X) -> c_9()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__f(x1) = [0] x1 + [0] n__s(x1) = [0] x1 + [0] n__0() = [0] s(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#() = [0] c_1(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] s^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [4] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(X) -> c_9()} Details: The given problem does not contain any strict rules